функция управления - translation to γαλλικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

функция управления - translation to γαλλικά

Тетрагамма-функция; Пентагамма-функция; Гексагамма-функция
  • Дигамма-функция <math>\psi(x)</math>
  • Пентагамма-функция <math>\psi'''(x)</math>
  • Тетрагамма-функция <math>\psi''(x)</math>
  • Тригамма-функция <math>\psi'(x)</math>

функция управления      
fonction de commande
система управления         
système de contrôle [de commande, de guidage]
система управления         
système de gestion

Ορισμός

АВТОМАТИЧЕСКАЯ СИСТЕМА УПРАВЛЕНИЯ
совокупность управляемого объекта и автоматических измерительных и управляющих устройств, в которой обработка информации, формирование команд и их преобразование в воздействия на управляемый объект осуществляются без участия человека.

Βικιπαίδεια

Полигамма-функция

Полига́мма-фу́нкция порядка m в математике определяется как (m+1)-я производная натурального логарифма гамма-функции,

ψ ( m ) ( z ) = d m d z m ψ ( z ) = d m + 1 d z m + 1 ln Γ ( z ) , {\displaystyle \psi ^{(m)}(z)={\frac {{\rm {d}}^{m}}{{\rm {d}}z^{m}}}\psi (z)={\frac {{\rm {d}}^{m+1}}{{\rm {d}}z^{m+1}}}\ln \Gamma (z)\;,}

где Γ ( z ) {\displaystyle \Gamma (z)}  — гамма-функция, а

ψ ( z ) = ψ ( 0 ) ( z ) = Γ ( z ) Γ ( z ) {\displaystyle \psi (z)=\psi ^{(0)}(z)={\frac {\Gamma '(z)}{\Gamma (z)}}}

— дигамма-функция, которую также можно определить через сумму следующего ряда:

ψ ( z ) = ψ ( 0 ) ( z ) = γ + k = 0 ( 1 k + 1 1 k + z ) , {\displaystyle \psi (z)=\psi ^{(0)}(z)=-\gamma +\sum \limits _{k=0}^{\infty }\left({\frac {1}{k+1}}-{\frac {1}{k+z}}\right)\;,}

где γ {\displaystyle {\textstyle {\gamma }}}  — постоянная Эйлера—Маскерони. Это представление справедливо для любого комплексного z 0 , 1 , 2 , 3 , {\displaystyle z\neq 0,\;-1,\;-2,\;-3,\ldots } (в указанных точках функция ψ ( z ) {\displaystyle {\textstyle {\psi (z)}}} имеет сингулярности первого порядка).

Полигамма-функцию также можно определить через сумму ряда

ψ ( m ) ( z ) = ( 1 ) m + 1 m ! k = 0 1 ( z + k ) m + 1 , m > 0 , {\displaystyle \psi ^{(m)}(z)=(-1)^{m+1}\;m!\;\sum \limits _{k=0}^{\infty }\displaystyle {\frac {1}{(z+k)^{m+1}}}\;,\qquad m>0\;,}

который получается из представления для дигамма-функции дифференцированием по z. Это представление также справедливо для любого комплексного z 0 , 1 , 2 , 3 , {\displaystyle z\neq 0,\;-1,\;-2,\;-3,\ldots } (в указанных точках функция ψ ( m ) ( z ) {\displaystyle {\textstyle {\psi ^{(m)}(z)}}} имеет сингулярности порядка (m+1)). Оно может быть записано через дзета-функцию Гурвица,

ψ ( m ) ( z ) = ( 1 ) m + 1 m ! ζ ( m + 1 , z ) . {\displaystyle \psi ^{(m)}(z)=(-1)^{m+1}\;m!\;\zeta (m+1,z)\;.}

В этом смысле дзета-функция Гурвица может быть использована для обобщения полигамма-функции на случай произвольного (нецелого) порядка m.

Отметим, что в литературе ψ ( m ) ( z ) {\displaystyle {\textstyle {\psi ^{(m)}(z)}}} иногда обозначается как ψ m ( z ) {\displaystyle {\textstyle {\psi _{m}(z)}}} или явным образом указываются штрихи для производных по z. Функция ψ ( z ) = ψ ( 1 ) ( z ) {\displaystyle {\textstyle {\psi '(z)=\psi ^{(1)}(z)}}} называется тригамма-функцией, ψ ( z ) = ψ ( 2 ) ( z ) {\displaystyle {\textstyle {\psi ''(z)=\psi ^{(2)}(z)}}}  — тетрагамма-функцией, ψ ( z ) = ψ ( 3 ) ( z ) {\displaystyle {\textstyle {\psi '''(z)=\psi ^{(3)}(z)}}}  — пентагамма-функцией, ψ ( 4 ) ( z ) {\displaystyle {\textstyle {\psi ^{(4)}(z)}}}  — гексагамма-функцией, и т. д.

Παραδείγματα από το σώμα κειμένου για функция управления
1. Функция управления активами возложена на центральный банк.
2. Далее функция управления опосредуется представителями государственных органов в управленческой структуре компании.
3. Мы считаем, что функция управления водными объектами должна находиться в руках субъектов федерации и муниципалитетов.
4. Новая модель власти - "сетевое правительство". Согласно этой схеме функция управления страной де-факто переходит к президентской команде.
5. Член Совета по вопросам совершенствования правосудия Тамара Морщакова считает, что функция управления внутри суда должна быть организована иначе, чем теперь.